A Persistent Na+ Current and Its Contribution to Burst-Like Firing in Ventral Tegmental Area Dopamine Neurons
نویسندگان
چکیده
The ventral tegmental area dopamine (DA VTA) neurons have the spontaneous tonic activity and an alteration of firing pattern from tonic to burst accelerates dopamine transmission more effectively in the mesoaccumbal dopaminergic system, leading to the reinforcing process of drugs of abuse such as alcohol and nicotine. In the present study, we examined whether a persistent Na+ current would contribute to burst firing in DA VTA neuronsusing nystatin-perforated recording. Tetrodotoxin (TTX) (1 μM) or riluzole (10 μM) hyperpolarized the membrane potential and stopped spontaneous firing of DA VTA neurons. In voltage-clamp analysis, a TTX and riluzole-sensitive and persistent Na+ current was activated at −60 mV and reached maximal amplitude at −40 mV. This persistent Na+ current was potentiated by a negative shift of the voltage of activation by eliminating Ca2+ from the extracellular solution. The Ca2+-free extracellular solution depolarized the membrane potential and increased the firing frequency of DA VTA neurons. When a continuous hyperpolarizing current was injected, the firing pattern of the DA VTA neurons transformed into burst-like firing; with average spike number of 4.9, average inter-spike interval of 221 ms, and an average plateau potential, on which the train of spikes generated, was 11 mV. The burstlike firing of DA VTA neurons was abolished by 10 μM riluzole. The concurrent blockade of both T-type Ca2+ current and small conductance Ca2+-activated K+(SK) currents by 100 μM nickel did not induce burst-like firing with or without continuous hyperpolarizing current injection in DA VTA neurons. In conclusion, increases in a persistent Na+ current that mediates a depolarizing driving force by removing extracellular Ca2+ contributes to burst-like firing in DA VTA neurons. Corresponding author.
منابع مشابه
Microinfusion of Bupropion Inhibits Putative GABAergic Neuronal Activity of the Ventral Tegmental Area
Introduction: The most common interpretation for the mechanisms of antidepression is the increase of the brain monoamine levels such as dopamine (DA). The increase of DA can reduce depression but it can also decrease the monoamine release because of autoreceptor inhibition. Although bupropion can decrease the dopamine release, there is evidence about stimulatory effects of chronic application o...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملThe Response of Ventral Tegmental Area Dopaminergic Neurons to Bupropion: Excitation or Inhibition?
Introduction: Antidepressants can modulate brain monoamines by acting on pre-synaptic and postsynaptic receptors. Autoreceptors can reduce the monoamines effect on the somatodendritic or pre-synaptic regions despite its postsynaptic counter effects. The direct effect of some antidepressants is related to its temporal and spatial bioavailability in the vicinity of these receptors (still a matter...
متن کاملVentral Tegmental Area Microinjected-SKF38393 Increases Regular Chow Intake in 18 Hours Food Deprived Rats
Ventral tegmental area (VTA) dopamine neurons play an important role in reward mechanisms of food intake, and VTA dopamine receptors exist on the terminal of glutamatergic and GABAergic neurons and regulate GABA and glutamate release. To our knowledge, there is no evidence to show that VTA D1 dopamine receptors play a role in regular chow intake. In this paper, the effect of SKF38393, a D1 rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015